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a b s t r a c t

A new stage concept was developed to reliably identify counterfeit tablets which are very similar to the
genuine drug product. This concept combines single-point near-infrared spectroscopy (NIRS) and near-
infrared chemical imaging (NIR-CI) with statistical variance analysis. The advantage of NIR-CI over NIRS
is the potential to determine not only the amount, but also the spatial distribution of ingredients within a
single tablet. Previously published NIR-CI studies used homogeneity as a key indicator for the identifica-
tion of counterfeits. The state of the art approach for estimating homogeneity is to record the average and
% standard deviation of predicted classification scores (i.e. concentrations) for a given component within
a specimen. A disadvantage of this approach is the partial loss of spatial information. In view of this, we
developed a new method using much more of the spatial information for the estimation of homogeneity.
The method is based on (1) summation and unfolding of multidimensional predicted classification scores,
which results in a Linear Image Signature (LIS) and (2) multivariate LIS data analysis (LIS-MVA). It could
be demonstrated that this kind of NIR-CI data analysis represents an innovative approach for the identifi-

cation of counterfeit tablets. Moreover, this procedure is applicable to determine the product variability,
i.e. process signature of a given product thus being a valuable tool within the Quality by Design (QbD)
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. Introduction

In recent years, the number of counterfeit drug products has
ncreased dramatically, including not only “life-style” products,
uch as potency enhancing drugs, but also vital medicines for the
reatment of e.g. high blood pressure, erectile dysfunction or high
holesterol [1–4]. Besides the threat to public health, the financial
nd reputational damage to pharmaceutical companies is substan-
ial.

The definition of a “counterfeit drug” by WHO is as follows: “A
ounterfeit medicine is one which is deliberately and fraudulently
islabelled with respect to identity and/or source. Counterfeiting

an apply to both branded and generic products and counterfeit

roducts may include products with the correct ingredients or with
he wrong ingredients, without active ingredients, with insufficient
ctive ingredient or with fake packaging” [5,6]. In 2006, the WHO
stablished the “International Medical Products Anti Counterfeiting
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Taskforce (IMPACT)”. Among other things, the European Commis-
sion is an active member of IMPACT and has specifically co-funded
and supported WHO in the development of the recommendation
“Principles and Elements for National Legislation against Counter-
feit Medical Products” [6,7]. The Commission also works together
with the European Medicines Agency (EMEA).

Counterfeit medicines can have serious health consequences.
Drug products without an active ingredient can endanger thera-
peutic effects and/or cause unpredictable reactions [4]. In case of a
hypertension medicine, an incorrect dose level may already cause
a high risk for the patient, since vascular damage may occur and
result in a heart attack or stroke. As the manufacture of counterfeit
medicines is often not in accordance with current Good Manufac-
turing Practices (GMP), there is usually no information about the
manufacturing process, appropriate hygiene and no reliable trace-
ability of the ingredients [8].
To protect genuine pharmaceutical products, various security
features on the packaging rather than the product itself have been
proposed by the WHO and the European Commission: holograms
or colour-shifting ink, invisible printing and digital watermarks
[9,10]. For the analysis of suspect counterfeit medicines, a variety

http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:gabriele.reich@urz.uni-heidelberg.de
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f analytical techniques are in place [4,11]. Usual methods include
isual controls, disintegration tests, chromatographic assays such
s LC–MS for purity, potency and content uniformity, or simple
olour reaction tests [5,12–14]. Most of the established meth-
ds are destructive and/or may only detect chemical differences.
ibrational spectroscopy such as single-point near-infrared spec-

roscopy (NIRS) has been shown to be a versatile tool for the analysis
f pharmaceutical drug products [15]. It is a non-destructive ana-
ytical technique with little or no sample preparation required and
nables simultaneous determination of chemical composition (e.g.
he content of the active pharmaceutical ingredient, API) and phys-
cal properties such as tablet hardness [16,17]. After successful
mplementation of a NIRS method, the resulting economic advan-
ages over conventional wet analytical techniques are high, since
nalytics can be performed efficiently. A few studies have been pub-
ished describing the use of NIRS for the detection of counterfeit
rugs [1,2,11,13,18–20].

Near-infrared chemical imaging (NIR-CI) is an even more pow-
rful technique, since it combines classical spectroscopy with the
bility to provide spatial information on the distribution of the
omponents of a drug product [15,21,22]. Thus, NIR-CI has been
uccessfully applied for drug identification [23,24] and quantifica-
ion [25,26], for visualising manufacturing problems and process
ffects on dissolution [27–30] and for estimating homogeneity
25,31–35]. Dubois et al. [12] and Wolff et al. [36] have used NIR-CI
or the identification and characterisation of counterfeit drug prod-
cts. Furthermore, a study published by the FDA [31] pointed to the
dditional information contained in NIR chemical images of tablets
urchased on the internet, and the potential value of this addi-
ional knowledge in qualifying both the potency and the quality
f the formulation as a whole [12]. Previous studies [12,36] fre-
uently used image analysis tools such as the evaluation of mean
alues and % standard deviation of predicted classification scores
f the components within a sample to evaluate homogeneity as a
ey indicator for the identification of counterfeits. Unfortunately,
his approach uses the unique spatial information given by NIR-CI
ncompletely.

In this work, we present a new four-stage concept for the reliable
dentification of solid counterfeits which are very similar to the
enuine product. The study is based on real samples which were
nvestigated via NIRS and NIR-CI. A novel approach of NIR-CI data
rocessing was applied.

. Experimental

.1. Materials

The motivation for this study was a confiscated blister pack with
ight yellow, heart-shaped, biconvex, scored tablets of a hyperten-
ion drug (bisoprolol-hemifumerate). The blister was labelled with
he trade name Concor®5 of Merck KGaA. There was strong sus-
icion of counterfeiting, since previous investigations using LC–MS
evealed a different impurity profile (data not shown), but a compa-
able content of bisoprolol-hemifumerate. Four tablets were taken
rom the blister and used for NIRS and NIR-CI analysis. All impurities
ere below the near-infrared detection limit.

A total of 25 tablets of the genuine drug product (Concor®5,
erck KGaA) were used as reference. The sample set included

amples from various batches of two different manufacturing sites
nd samples collected from stability testing, thus covering prod-
ct performance variability: 10 tablets from two batches produced
n 2005 at Merck-site-A (stability samples with high water con-
ent determined by Karl Fischer titration); 15 tablets from three
atches produced in 2008 at Merck-site-A; five tablets from one
atch of Merck-site-B produced in 2006. This sample selection is in
ccordance with the Quality by Design (QbD) principles of the ICH
Biomedical Analysis 51 (2010) 138–145 139

Q8 guideline “Pharmaceutical Development” [37], saying that it is
essential to know the product variability.

In addition, we used a total of 30 generic tablets from five dif-
ferent suppliers with the same content of the active ingredient
(bisoprolol-hemifumerate) as the genuine product, but differences
in the excipient composition. Each generic batch consisted of five
tablets. Coating was carefully removed using a scalpel in order to
expose the interior to spectroscopic measurements and chemical
imaging.

2.1.1. Pure components for the hyperspectral library
The genuine drug product contains bisoprolol-hemifumerate

as active pharmaceutical ingredient (API) and crospovidone,
microcrystalline cellulose, corn starch and calcium hydro-
gen phosphate as major excipients. Bisoprolol-hemifumerate
(1-[4-[2-(1-methylethoxy)ethoxymethyl]phenoxy]-3-(1-
methylethylamino)propan-2-ol) is a competitive, beta(1)-selective
(cardioselective) adrenergic antagonist. It is used to treat hyper-
tension, arrhythmias, coronary heart disease, glaucoma, and is
also used to reduce non-fatal cardiac events in patients with
heart failure [38]. Pure component spectra were collected from
powder samples of bisoprolol-hemifumerate (Merck & Cie KG,
Altdorf, Switzerland) and pharmaceutical grade crospovidone,
microcrystalline cellulose and corn starch. Due to its low NIR
activity, calcium hydrogen phosphate was not included in the
hyperspectral library. Subsequently, bisoprolol-hemifumerate will
be abbreviated as bisoprolol.

2.2. Methods

2.2.1. Near-infrared spectroscopy
NIR spectra of the tablets were collected in reflectance mode

using (a) the Multi Purpose FT-NIR Analyser in combination with
OPUS 6.5 software (both Bruker Optics, Ettlingen, Germany) and
equipped with a RT-PbS detector and a 30-position automatic sam-
ple tray. The acquisition parameters were 32 scans per spectrum
over the wavelength range 833–2857 nm (12000–3500 cm−1) at a
resolution of 8 nm. All tablets were equally positioned to minimise
score-line effects. Furthermore, NIR spectral images of the tablets
were collected in reflectance mode using (b) the SyNIRgiTM Chem-
ical Imaging System. Data acquisition will be described in detail in
the next section.

To discriminate among genuine-, generic- and counterfeit
tablets, spectral data were chemometrically processed and visu-
alised using The Unscrambler® 9.7 (Camo Software AS., Oslo,
Norway) and JMP® 8 (SAS Institute Inc., Cary, USA) software,
respectively. The following mathematical transformations of the
spectra were successively carried out: for method (a): unit vec-
tor normalisation and extended multiplicative scatter correction
(EMSC) and for method (b): unit vector normalisation and a sec-
ond derivative algorithm (Savitzky–Golay algorithm [39], using
third-order polynomials across 11 data points). EMSC is a pow-
erful pre-processing technique to isolate and remove complicated
multiplicative and additive effects, such as those caused by light
scattering in reflectance spectroscopy. It expands on the popular
multiplicative scatter/signal correction technique by offering much
improved flexibility in selecting backgrounds to subtract known
interferences as well as scaling targets and known analyte spectra
[40,41].

Further transformations were carried out (data not shown),
however, the previously mentioned methods revealed the best

results.

2.2.2. Near-infrared chemical imaging
Data were collected with a SyNIRgiTM Chemical Imaging Sys-

tem (Malvern Instruments, Malvern, UK) equipped with an InSb
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ocal plane array detector (320 × 256 pixels) and a 30-position auto-
atic sample holder. Image cubes of each tablet were acquired
ith Pixys® 1.1 software (Malvern Instruments, Malvern, UK) in

he spectral range 1200–2400 nm at 10 nm steps and 16 frames per
avelength. The field of view was set to 12.8 mm × 10.2 mm which

ncompasses 100% of the area of the tablet and provides a mag-
ification of 40 �m per pixel. Each image cube contained 81 920

ull NIR spectra and required a collection time of approximately
min. Before the actual sample is scanned, the software enforces

he collection of appropriate dark and background data cubes, and
hen uses these data to produce reflectance spectra according to
he formula R = (S − D)/(B − D), where S is the sample cube, B is the
9% reflectance cube (Background), D is the dark cube, and R is the
esulting reflectance cube. This calculation was performed for all
ixels in all planes in the cube.

Imaging data were analysed and processed with ISys 5.0 Soft-
are (Malvern Instruments, Malvern, UK). The first step was to

onvert the data into absorbance units according to the following
quation: A = log 1/R, were A = absorbance and R = reflectance. A sec-
nd derivative algorithm was applied (Savitzky–Golay algorithm
39], using third-order polynomials across 11 data points). Pure
omponent imaging data was collected from powder samples of
he API and three major excipients (crospovidone, microcrystalline
ellulose and corn starch). Spectral data of all four components
ere processed in the same manner. A reference library with >5000

pectra per component was built for the API and the excipients.
hese training spectra were used as predictors to build a partial
east squares (PLS) classification model, which was applied to the
pectral data of the tablets for discriminante analysis. For quan-
ification purposes and/or predictions on physical attributes the
alidity of using powder samples of pure components as train-
ng spectra for tablet analysis may be less straightforward than in
he present study, which focussed on fast discrimination between
enuine and counterfeit tablets. Applying such PLS model to the

ablets resulted in a “classification scores image” for each of the
ibrary components without any quantitative calibration set being
equired. The intensity of each pixel in the resultant predicted clas-
ification scores image is determined by the degree of membership
scaled from 0 to 1) predicted for the spectrum at that special loca-

Fig. 1. General approach for the iden
Biomedical Analysis 51 (2010) 138–145

tion based on the reference spectra [29]. A score value of 0 meant
that the component was not present and a score value of 1 meant
that the component was present at 100%. The brighter the colour of
the pixel, the stronger the degree of membership of that spectrum
to the specific class predicted at that location. For the presented
images, the brighter colour represents a higher concentration. The
variation in predicted classification scores and the distribution of
pixels reflects the variation in component concentration across the
sample and is an indication for homo-/heterogeneity. All PLS pre-
dicted images shown in the next section result from histogram
plots centred to the mean and normally distributed. The predicted
concentration threshold was set to 3SD.

3. Results and discussion

3.1. Stage concept

In this study, a four-stage concept for the reliable identification
of solid counterfeits was developed. This new concept is shown in
Fig. 1 and will be discussed in more detail in the next sections.

3.1.1. Stage 1: visual characterisation
Upon visual inspection, the confiscated blister and the tablets

could not be distinguished from the genuine product: the blister
was labelled with “Concor®5 Merck” and the tablets were light
yellow, heart-shaped, both sides convex and scored as the brand.
Because of the similarities of the counterfeits and the genuine
tablets a multivariate NIRS/NIR-CI (PCA) analysis was performed
(stage 2).

3.1.2. Stage 2: NIRS/NIR-CI analysis (PCA)
NIR spectra of genuine-, generic- and fake tablets were collected

with a FT-NIR spectrometer and a NIR-imaging system. To under-
stand the results obtained with these two techniques, the main

differences between the two have to be considered. The imaging
system allowed the whole tablet surface (a mean of 81 920 spec-
tra) to be analysed, whereas a spectrum obtained from the FT-NIR
spectrometer was a mean of 32 scans, given by a smaller area of the
tablet surface (∼3 mm). The resolution of the FT-NIR spectrometer

tification of counterfeit tablets.
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Fig. 2. Scores plot resulting from a PCA of spectra, generated by the FT-NIR spec-
trometer (pre-processed according to method (a)): generics produced in 2008 (black
squares); wet genuine tablets produced in 2005 (circles, grey); genuine tablets pro-
duced in 2008 (squares, blue); tablets from another Merck-site produced in 2006
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Fig. 3. Scores plot resulting from a PCA of spectra, generated by the Imaging System
(pre-processed according to method (b)): generics produced in 2008 (black squares);

four components can be clearly analysed. Similarly, Fig. 4b shows
related PLS predicted images for the same ingredients in a coun-
terfeit tablet. In our case, five factors included in the model were
enough for the reliable prediction of ingredients. The Predicted

Fig. 4. Exemplary PLS predicted images: (a) genuine tablet; (b) counterfeit tablet
triangle, green); counterfeit tablets (squares, red). (For interpretation of the refer-
nces to colour in this figure legend, the reader is referred to the web version of the
rticle.)

as higher (8 nm) and the spectral range broader (833–2857 nm)
ompared to the NIR-imaging system (10 nm; 1200–2400 nm).

A principal component analysis (PCA) was performed to the pre-
rocessed spectra, collected with the FT-NIR spectrometer. Fig. 2
hows the scores plot with the first three principle components.

The scores plot clearly reveals that the counterfeit cluster is
ery close to the main genuine cluster and cannot be distinguished
rom the different genuine products. However, the cluster of the
eneric tablets is well separated from the cluster of the genuine
roduct and the suspect counterfeit. This indicates compositional
ifferences between the genuine tablets and the generics. More-
ver, upon closer inspection of the genuine cluster it is evident that
C2 is able to distinguish the wet genuine tablets produced in 2005
rom the remaining genuine tablets.

The results of the PCA of the pre-processed spectra collected by
he NIR-imaging system are illustrated in Fig. 3.

As appears, the cluster of the counterfeit tablets is slightly sepa-
ated, but still close to the main genuine cluster. Moreover, not only
ifferences in water content (as observed in Fig. 2), but also site-to-
ite variability of the genuine product are distinguished. Obviously,
he spectral information gained from the whole tablet surface was
lightly different to the one gained from a 3 mm spot. Thus, it could
e speculated that the formulation of the counterfeit tablets were
ifferent to the generic tablets.

A PCA model, which included only genuine tablets and excluded
enerics, was performed and applied to the counterfeit tablets.
hree of four counterfeits were found inside the range of the 95%
onfidence interval (data not shown). Moreover, a PCA only using
he spectral range related to water (∼1930 nm) revealed a clear
istinction between wet genuine tablets produced in 2005 and
he remaining genuine tablets. The counterfeits were located near
he wet genuine tablets produced in 2005 (data not shown). These
esults clearly show the importance of using tablets not only from

ifferent sites, but also originating from stability testing, to verify
enuine product variability.

According to the developed stage concept, the counterfeit
ablets were not yet identified by the use of NIRS analysis. There-
wet genuine tablets produced in 2005 (circles, grey); genuine tablets produced in
2008 (squares, blue); tablets from another Merck-site produced in 2006 (triangle,
green); counterfeit tablets (squares, red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of the article.)

fore a more detailed NIR-CI (PLS) investigation was performed in
stage 3.

3.1.3. Stage 3: NIR-CI analysis (PLS)
The first step was the development of the reference library and

the PLS calibration model with the powder samples of the pure API
and three major NIR-active excipients (crospovidone, microcrys-
talline cellulose and corn starch). As it was the purpose of the study
to establish a fast and economic method for discriminante analysis,
i.e. identification of counterfeits, a PLS classification model rather
than a quantitative PLS model was developed. Fig. 4a shows the
PLS predicted images of the ingredients in a genuine tablet. The
– red pixels indicate higher concentration and blue pixels indicate lower concen-
tration; images result from histogram plots centred to the mean and normally
distributed; predicted concentration threshold: 3SD. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of
the article.)
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Fig. 5. PLS predicted API images for wet genuine tablets produced in 2005; genuine tablets produced in 2008; tablets from another Merck-site produced in 2006; counterfeit
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ablets – red pixels indicate higher concentration and blue pixels indicate lower
istributed; predicted concentration threshold: 3SD. (For interpretation of the ref
rticle.)

esidual Sum of Squares (PRESS) was lower than 0.02 at that stage.
RESS displays how the residual prediction errors depend on the
umber of factors in the model. We truncated the factors beyond
ve because the slope of the PRESS significantly flattens. This flat-
ening of the slope indicates that the subsequent factors contribute
ittle to the prediction.

The NIR-CI results demonstrate the ability of the imaging sys-
em to detect the API and the major excipients and display its spatial
istribution within the drug product. As the genuine product, the
ounterfeit tablets consist of bisoprolol, crospovidone, microcrys-
alline cellulose and corn starch, in a similar relative abundance.

The next step was to apply the PLS model to all tablets. In order to
inimise the complexity we continued with the API and the major

xcipient crospovidone. Calculations were also performed for the
ther two major excipients (data not shown).

Fig. 5 shows the PLS predicted API images for the genuine drug
roducts and counterfeit tablets. The score values over the images
how that the maximum value at any pixel is only∼0.1 which would
quate to an abundance of ∼10%, i.e. 90% of the pixel contribution
s from the other components.

The API is well distributed throughout the original product, but
ot in the counterfeits. Regions of high concentration, indicating a

ack of mixing, were more prevalent in the counterfeit drug product
han in the genuine tablets, indicating poor API homogeneity in the
ounterfeit. Generally, all samples from a given batch were similar.

Fig. 6 shows the PLS predicted crospovidone images in gen-
ine drug products and counterfeits. Crospovidone as a disintegrant
lays a major role in a tablet formulation. A disintegrant is an excip-

ent which is added to a tablet or a powder blend of a capsule to
ssist disintegration of the compacted mass when it gets in contact

ith an aqueous medium. Crospovidone is completely insoluble in
ater but it rapidly swells in water [42,43]. In our case, the swollen

rospovidone in wet tablets caused changes in the matrix of the
ablet, which result in higher predicted classification score values
Fig. 6).
ntration; images result from histogram plots centred to the mean and normally
es to colour in this figure legend, the reader is referred to the web version of the

The visual inspection of the images already indicates differ-
ences in the homogeneity of the samples according to the API and
the crospovidone. The measurement of the homogeneity could be
an effective way to identify counterfeits. Lyon et al. [32] describe
homogeneity measurements by calculating the % standard devi-
ation of the distribution of the predicted classification scores for
a given component within a specimen. Homogeneous tablets will
have small standard deviations, while heterogeneous tablets will
have larger standard deviations. Image statistics was carried out,
but the % standard deviation of the predicted classification scores
for the API was less sensitive. There was no major difference
between the average % standard deviation for the genuine tablets
(5.78 ± 0.6) and the counterfeit tablets (8.58 ± 0.9).

Since stage 3 (i.e. NIR-CI (PLS) analysis) revealed that the compo-
sition of the counterfeits is very similar to the genuine drug product,
a new statistic approach was used to analyse sample variability, i.e.
homogeneity. The approach will be discussed in more detail in the
next section.

3.1.4. Stage 4: variance analysis given by Quality by Design
(QbD) principles

The sample set of the genuine product including intra-batch,
batch-to-batch and site-to-site variabilities resulted in an image
signature which allowed the product variability to be identified
according to the Quality by Design (QbD) principles of the ICH Q8
[37] guideline. In a study, initiated by the Office of Compliance in
FDA’s Center for Drug Evaluation and Research, Westenberger et
al. [31] investigated the use of non-traditional analytical methods
like NIRS and NIR-CI to evaluate the quality of a variety of phar-
maceutical products. One result of the study was emphasised: “To

identify an entire sample lot as less homogeneous than the inno-
vator, it would be necessary to examine multiple lots of innovator
product to determine a range of acceptable variability” [31].

We performed sample statistics by the use of the software ISys,
which is an important tool in the visualisation of imaging data.
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ig. 6. PLS predicted crospovidone images for wet genuine tablets produced in 200
ounterfeit tablets – red pixels indicate higher concentration and blue pixels indi
ormally distributed; predicted concentration threshold: 3SD. (For interpretation o
f the article.)

hrough histogram plots and statistics patterns the predicted clas-
ification scores and pixel distribution throughout the image can be
omputed. One parameter given by the histogram plot is skewness,
hich can be used as supportive information to interpret the distri-

ution of a component. Skewness is a measure of lack of symmetry;
t indicates whether the distribution is symmetrical to the centre
f mass of the histogram plot. A normal distribution with close-
o-zero skewness is generally indicative of good homogeneity. A
egative skewness indicates that the distribution is tailing to the
eft and a positive skew indicates tailing to the right. They are both
ften related to inhomogeneity in the sample and therefore could
e used for diagnosing counterfeiting. Another parameter given by
he histogram plot is kurtosis. It is a measure of the flatness or

ig. 7. Skewness values of the API vs. skewness values of crospovidone: wet genuine ta
lue); tablets from another Merck-site produced in 2006 (triangle, green); counterfeit t

egend, the reader is referred to the web version of the article.)
uine tablets produced in 2008; tablets from another Merck-site produced in 2006;
wer concentration; images result from histogram plots centred to the mean and

references to colour in this figure legend, the reader is referred to the web version

“peakedness” of the distribution and can also be used as indicator
of homogeneity. In our case, however, we observed that the kurto-
sis was less sensitive than skewness (data not shown). This may be
different in case of other samples.

The skewness value of the API was plotted against the skewness
value of crospovidone to show the heterogeneity within the tablets
(Fig. 7). It is evident that the counterfeits have higher skewness
values of the API. This result confirms the visual observation of the
chemical images in stage 3. The counterfeits are less homogeneous

with respect to the API distribution than the genuine tablets.

Based on these results, a new approach to determine product
variabilities was attempted, namely to sum up the predicted clas-
sification scores of the PLS predicted API image. The procedure

blets produced in 2005 (circles, grey); genuine tablets produced in 2008 (squares,
ablets (squares, red). (For interpretation of the references to colour in this figure
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Fig. 9. Scores plot resulting from a PCA of summed and unfolded classification scores
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ill be exemplarily described by means of one tablet as shown in
ig. 8a.

The first step was to export the PLS predicted API image as ascii-
le to a spreadsheet-application software. We used a definite range
f positive classification scores (0–0.1) for better comparability.
his resulted in a data set with ∼168 rows and 196 columns of
lassification scores per tablet (similar “heart-shape” of the used
ablets). Next, the sums over the scores (concentrations) were sim-
ly calculated column by column (X-direction) and line by line
Y-direction). For ease of understanding the worksheet was turned
y 90 degrees as displayed in Fig. 8a (right side). The Z-direction
epresents the predicted concentrations. The concatenation of the
eceived X- and Y-dimension data in one row resulted in an unfold-
ng of information, i.e. a Linear Image Signature (LIS). Fig. 8b
llustrates the X- and Y-values of four tablets in a line plot. Fig. 8c
epresents the corresponding first derivative (Savitzky–Golay algo-
ithm [39], using second-order polynomials across 25 data points).
o classify different signatures, a PCA was applied to the LIS profiles
Fig. 9).

The small distance between the genuine tablet batches reflects
heir similarity. The counterfeits, however, are now far apart. This is
n contrast to the results obtained from NIRS measurements based

n both acquisition and pre-processing methods tested (i.e. (a) and
b)) and a clear indication of counterfeiting. With the new approach
t was possible to distinguish among the innovator product and the
ounterfeit tablets because spatial information obtained by NIR-CI

ig. 8. (a) Exemplary description of summation of the predicted classification scores
f one PLS predicted API image column by column; (b) line plot of the sums of X- and
-values of the predicted classification scores of the PLS predicted API images – coun-
erfeit (red), wet genuine tablet produced in 2005 (grey), genuine tablet produced
n 2008 (blue), genuine tablet of another Merck-site (green); (c) first derivative data
f (b). (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of the article).

of the PLS predicted API images: wet genuine tablets produced in 2005 (circles, grey);

genuine tablets produced in 2008 (squares, grey); tablets from another Merck-site
produced in 2006 (triangle, green); counterfeit tablets (squares, red). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of the article.)

was combined with information on product variability. The pro-
posed method may be complemented with adequate statistical
criteria (e.g. multivariate Hotelling T2 statistics) for discrimination.

4. Conclusions

A new stage concept for the reliable identification of solid coun-
terfeits was developed. Based on real samples it was demonstrated
that this stage concept works for counterfeits which are very simi-
lar to the genuine product. Single-point NIRS has been shown to be
a highly efficient technique for differentiating between the innova-
tor product and generic tablets with compositional differences (e.g.
different major excipients). For counterfeit identification, NIR-CI
turned out to be superior to single-point NIRS because it combines
the capability of spectroscopy with the potential of visualisation,
thus allowing local characterisation of the chemical composition,
domain structure, and chemical architecture. In addition, it delin-
eates the spatial uniformity of the API as well as major excipients
across the final dosage form, and the whole tablet surface is ascer-
tainable. For the present study we used homogeneity as a key
indicator for the identification of counterfeits. It was shown that
the skewness of pixel distribution given by the image statistics
is a meaningful quality parameter to describe homogeneity. How-
ever, the disadvantage of this approach is the partial loss of spatial
information.

Therefore, we developed a new method that uses the spa-
tial information for the evaluation of homogeneity by means of
summation and unfolding of multidimensional predicted concen-
trations (i.e. values for a given specimen in a predicted image). This
approach results in a Linear Image Signature (LIS) which contains
spatial information despite linearisation. Multivariate LIS data anal-
ysis revealed higher variability in pixel distribution and predicted
concentrations for the counterfeit tablets compared to the genuine

product, and thus allowed to successfully identify the counterfeit
tablets.

Detection of product variability by this novel procedure is an
interesting approach not only for counterfeit identification, but also
for process validation, i.e. to determine the process signature of
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